Spider
Spiders (order Araneae) are air-breathing arthropods that have eight legs, and chelicerae with fangs that inject venom. They are the largest order of arachnids and rank seventh in total species diversity among all other groups of organisms. Spiders are found worldwide on every continent except for Antarctica, and have become established in nearly every habitat with the exception of air and sea colonization. As of 2008, approximately 40,000 spider species, and 109 families have been recorded by taxonomists; however, there has been confusion within the scientific community as to how all these families should be classified, as evidenced by the over 20 different classifications that have been proposed since 1900.
Anatomically, spiders differ from other arthropods in that the usual body segments are fused into two tagmata, the cephalothorax and abdomen, and joined by a small, cylindrical pedicel. Unlike insects, spiders do not have antennae. In all except the most primitive group, the Mesothelae, spiders have the most centralized nervous systems of all arthropods, as all their ganglia are fused into one mass in the cephalothorax. Unlike most arthropods, spiders have no extensor muscles in their limbs and instead extend them by hydraulic pressure.
Their abdomens bear appendages that have been modified into spinnerets that extrude silk from up to six types of silk glands within their abdomen. Spider webs vary widely in size, shape and the amount of sticky thread used. It now appears that the spiral orb web may be one of the earliest forms, and spiders that produce tangled cobwebs are more abundant and diverse than orb-web spiders. Spider-like arachnids with silk-producing spigots appear in the Devonian period about 386 million years ago, but these animals apparently lacked spinnerets. True spiders have been found in Carboniferous rocks from 318 to 299 million years ago, and are very similar to the most primitive surviving order, the Mesothelae. The main groups of modern spiders, Mygalomorphae and Araneomorphae, first appear in the Triassic period, before 200 million years ago.
A vegetarian species was described in 2008, but all other known species are predators, mostly preying on insects and on other spiders, although a few large species also take birds and lizards. Spiders use a wide range of strategies to capture prey: trapping it in sticky webs, lassoing it with sticky bolas, mimicking the prey to avoid detection, or running it down. Most detect prey mainly by sensing vibrations, but the active hunters have acute vision, and hunters of the genus Portia show signs of intelligence in their choice of tactics and ability to develop new ones. Spiders' guts are too narrow to take solids, and they liquidize their food by flooding it with digestive enzymes and grinding it with the bases of their pedipalps, as they do not have true jaws.
Male spiders identify themselves by a variety of complex courtship rituals to avoid being eaten by the females. Males of most species survive a few matings, limited mainly by their short life spans. Females weave silk egg-cases, each of which may contain hundreds of eggs. Females of many species care for their young, for example by carrying them around or by sharing food with them. A minority of species are social, building communal webs that may house anywhere from a few to 50,000 individuals. Social behavior ranges from precarious toleration, as in the aggressive widow spiders, to co-operative hunting and food-sharing. Although most spiders live for at most two years, tarantulas and other mygalomorph spiders can live up to 25 years in captivity.
While the venom of a few species is dangerous to humans, scientists are now researching the use of spider venom in medicine and as non-polluting pesticides. Spider silk provides a combination of lightness, strength and elasticity that is superior to that of synthetic materials, and spider silk genes have been inserted into mammals and plants to see if these can be used as silk factories. As a result of their wide range of behaviors, spiders have become common symbols in art and mythology symbolizing various combinations of patience, cruelty and creative powers.
Spiders are chelicerates and therefore arthropods. As arthropods they have: segmented bodies with jointed limbs, all covered in a cuticle made of chitin and proteins; heads that are composed of several segments that fuse during the development of the embryo. Being chelicerates, their bodies consist of two tagmata, sets of segments that serve similar functions: the foremost one, called the cephalothorax or prosoma, is a complete fusion of the segments that in an insect would form two separate tagmata, the head and thorax; the rear tagma is called the abdomen or opisthosoma. In spiders the cephalothorax and abdomen are connected by a small cylindrical section, the pedicel. The pattern of segment fusion that forms chelicerates' heads is unique among arthropods, and what would normally be the first head segment disappears at an early stage of development, so that chelicerates lack the antennae typical of most arthropods. In fact chelicerates' only appendages ahead of the mouth are a pair of chelicerae, and they lack anything that would function directly as "jaws". The first appendages behind the mouth are called pedipalps, and serve different functions within different groups of chelicerates.
In spiders the cephalothorax and abdomen are joined by a small, cylindrical pedicel, which enables the abdomen to move independently when producing silk. The upper surface of the cephalothorax is covered by a single, convex carapace while the underside is covered by two rather flat plates. The abdomen is soft and egg-shaped. It shows no sign of segmentation, except that the primitive Mesothelae, whose living members are the Liphistiidae, have segmented plates on the upper surface.
Like other arthropods, spiders are coelomates in which the coelom is reduced to small areas round the reproductive and excretory systems. Its place is largely taken by a hemocoel, a cavity that runs most of the length of the body and through which blood flows. The heart is a tube in the upper part of the body, with a few ostia that act as non-return valves allowing blood to enter the heart from the hemocoel but prevent it from leaving before it reaches the front end. However, in spiders it occupies only the upper part of the abdomen, and blood is discharged into the hemocoel by one artery that opens at the rear end of the abdomen and by branching arteries that pass through the pedicle and open into several parts of the cephalothorax. Hence spiders have open circulatory systems. The blood of many spiders that have book lungs contains the respiratory pigment hemocyanin to make oxygen transport more efficient.
Spiders have developed several different respiratory anatomies, based on book lungs, a tracheal system, or both. Mygalomorph and Mesothelae spiders have two pairs of book lungs filled with haemolymph, where openings on the ventral surface of the abdomen allow air to enter and diffuse oxygen. This is also the case for some basal araneomorph spiders like the family Hypochilidae, but the remaining members of this group have just the anterior pair of book lungs intact while the posterior pair of breathing organs are partly or fully modified into tracheae, through which oxygen is diffused into the haemolymph or directly to the tissue and organs. The trachea system has most likely evolved in small ancestors to help resist desiccation. The trachea were originally connected to the surroundings through a pair of openings called spiracles, but in the majority of spiders this pair of spiracles has fused into a single one in the middle, and moved backwards close to the spinnerets. Spiders that have tracheae generally have higher metabolic rates and better water conservation.
Uniquely among chelicerates, the final sections of spiders' chelicerae are fangs, and the great majority of spiders can use them to inject venom into prey from venom glands in the roots of the chelicerae. Like most arachnids including scorpions, spiders have a narrow gut that can only cope with liquid food and spiders have two sets of filters to keep solids out. They use one of two different systems of external digestion. Some pump digestive enzymes from the midgut into the prey and then suck the liquified tissues of the prey into the gut, eventually leaving behind the empty husk of the prey. Others grind the prey to pulp using the chelicerae and the bases of the pedipalps, while flooding it with enzymes; in these species the chelicerae and the bases of the pedipalps form a preoral cavity that holds the food they are processing.
The stomach in the cephalothorax acts as a pump that sends the food deeper into the digestive system. The mid gut bears many digestive ceca, compartments with no other exit, that extract nutrients from the food; most are in the abdomen, which is dominated by the digestive system, but a few are found in the cephalothorax.
Most spiders convert nitrogenous waste products into uric acid, which can be excreted as a dry material. Malphigian tubules ("little tubes") extract these wastes from the blood in the hemocoel and dump them into the cloacal chamber, from which they are expelled through the anus. Production of uric acid and its removal via Malphigian tubules are a water-conserving feature that has evolved independently in several arthropod lineages that can live far away from water, for example the tubules of insects and arachnids develop from completely different parts of the embryo. However a few primitive spiders, the sub-order Mesothelae and infra-order Mygalomorphae, retain the ancestral arthropod nephridia ("little kidneys"), which use large amounts of water to excrete nitrogenous waste products as ammonia.
The basic arthropod central nervous system consists of a pair of nerve cords running below the gut, with paired ganglia as local control centers in all segments; a brain formed by fusion of the ganglia for the head segments ahead of and behind the mouth, so that the esophagus is encircled by this conglomeration of ganglia.[14] Except for the primitive Mesothelae, of which the Liphistiidae are the sole surviving family, spiders have the much more centralized nervous system that is typical of arachnids: all the ganglia of all segments behind the esophagus are fused, so that the cephalothorax is largely filled with nervous tissue and there are no ganglia in the abdomen; in the Mesothelae, the ganglia of the abdomen and the rear part of the cephalothorax remain unfused.
Most spiders have four pairs of eyes on the top-front area of the cephalothorax, arranged in patterns that vary from one family to another. The pair at the front are of the type called pigment-cup ocelli ("little eyes"), which in most arthropods are only capable of detecting the direction from which light is coming, using the shadow cast by the walls of the cup. However the main eyes at the front of spiders' heads are pigment-cup ocelli that are capable of forming images. The other eyes are thought to be derived from the compound eyes of the ancestral chelicerates, but no longer have the separate facets typical of compound eyes. Unlike the main eyes, in many spiders these secondary eyes detect light reflected from a reflective tapetum lucidum, and wolf spiders can be spotted by torch light reflected from the tapeta. On the other hand jumping spiders' secondary eyes have no tapeta. Jumping spiders' visual acuity exceeds by a factor of ten that of dragonflies, which have by far the best vision among insects; in fact the human eye is only about five times sharper than a jumping spider's. They achieve this by a telephoto-like series of lenses, a four-layer retina and the ability to swivel their eyes and integrate images from different stages in the scan. The downside is that the scanning and integrating processes are relatively slow.
As with other arthropods, spiders' cuticles would block out information about the outside world, except that they are penetrated by many sensors or connections from sensors to the nervous system. In fact spiders and other arthropods have modified their cuticles into elaborate arrays of sensors. Various touch sensors, mostly bristles called setae, respond to different levels of force, from strong contact to very weak air currents. Chemical sensors provide equivalents of taste and smell, often by means of setae. Spiders also have in the joints of their limbs slit sensillae that detect forces and vibrations. In web-building spiders all these mechanical and chemical sensors are more important than the eyes, while the eyes are most important to spiders that hunt actively.
Like most arthropods, spiders lack balance and acceleration sensors and rely on their eyes to tell them which way is up. Arthropods' proprioceptors, sensors that report the force exerted by muscles and the degree of bending in the body and joints, are well understood. On the other hand little is known about what other internal sensors spiders or other arthropods may have.
Although all arthropods use muscles attached to the inside of the exoskeleton to flex their limbs, spiders and a few other groups still use hydraulic pressure to extend them, a system inherited from their pre-arthropod ancestors. As a result a spider with a punctured cephalothorax cannot extend its legs, and the legs of dead spiders curl up. Spiders can generate pressures up to eight times their resting level to extend their legs, and jumping spiders can jump up to 50 times their own length by suddenly increasing the blood pressure in the third or fourth pair of legs.
Most spiders that hunt actively, rather than relying on webs, have dense tufts of fine hairs between the paired claws at the tips of their legs. These tufts, known as scopulae, consist of bristles whose ends are split into as many as 1,000 branches, and enable spiders with scopulae to walk up vertical glass and upside down on ceilings. It appears that scopulae get their grip from contact with extremely thin layers of water on surfaces. Spiders, like most other arachnids, keep at least four legs on the surface while walking or running.
The abdomen has no appendages except those that have been modified to form one to four (usually three) pairs of short, movable spinnerets, which emit silk. Each spinneret has many spigots, each of which is connected to one silk gland. There are at least six types of silk gland, each producing a different type of silk.
Silk is mainly composed of a protein very similar to that used in insect silk. It is initially a liquid, and hardens not by exposure to air but as a result of being drawn out, which changes the internal structure of the protein. It is similar in tensile strength to nylon and biological materials such as chitin, collagen and cellulose, but is much more elastic, in other words it can stretch much further before breaking or losing shape.
Some spiders have a cribellum, a modified spinneret with up to 40,000 spigots, each of which produces a single very fine fiber. The fibers are pulled out by the calamistrum, a comb-like set of bristles on the jointed tip of the cribellum, and combined into a composite woolly thread that is very effective in snagging the bristles of insects. The earliest spiders had cribella, which produced the first silk capable of capturing insects, before spiders developed silk coated with sticky droplets. However most modern groups of spiders have lost the cribellum.
Even species that do not build webs to catch prey use silk in several ways: as wrappers for sperm and for fertilized eggs; as a "safety rope"; for nest-building; and as "parachutes" by the young of some species.
Spiders reproduce sexually and fertilization is internal but indirect, in other words the sperm is not inserted into the female's body by the male's genitals but by an intermediate stage. Unlike many land-living arthropods, male spiders do not produce ready-made spermatophores (packages of sperm) but spin small sperm webs on to which they ejaculate and then transfer the sperm to syringe-like structures on the tips of their pedipalps. When a male detects signs of a female nearby he checks whether she is of the same species and whether she is ready to mate; for example in species that produce webs or "safety ropes", the male can identify the species and sex of these objects by "smell".
Males of the genus Tidarren amputate one of their palps before maturation and enter adult life with one palp only. The palps are 20% of male's body mass in this species, and detaching one of the two improves mobility. In the Yemeni species Tidarren argo, the remaining palp is then torn off by the female. The separated palp remains attached to the female's epigynum for about four hours and apparently continues to function independently. In the meantime the female feeds on the palpless male. In over 60% of cases the female of the Australian redback spider kills and eats the male after it inserts its second palp into the female's genital opening; in fact the males co-operate by trying to impale themselves on the females' fangs. Observation shows that most male redbacks never get an opportunity to mate, and the "lucky" ones increase the likely number of offspring by ensuring that the females are well-fed. However males of most species survive a few matings, limited mainly by their short life spans. Some even live for a while in their mates' webs.
Females lay up to 3,000 eggs in one or more silk egg sacs, which maintain a fairly constant humidity level. In some species the females die afterwards, but females of other species protect the sacs by attaching them to their webs, hiding them in nests, carrying them in the chelicerae or attaching them to the spinnerets and dragging them along.
Baby spiders pass all their larval stages inside the egg and hatch as spiderlings, very small and sexually immature but similar in shape to adults. Some spiders care for their young, for example a wolf spider's brood cling to rough bristles on the mother's back, and females of some species respond to the "begging" behaviour of their young by giving them their prey, provided it is no longer struggling, or even regurgitate food.
Like other arthropods, spiders have to molt to grow as their cuticle ("skin") cannot stretch. In some species males mate with newly molted females, which are too weak to be dangerous to the males. Most spiders live for only one to two years, although some tarantulas can live in captivity for over 20 years.
Juveniles of some spiders in the families Anyphaenidae, Corinnidae, Clubionidae, Thomisidae and Salticidae feed on plant nectar. Laboratory studies show that they do so deliberately and over extended periods, and periodically clean themselves while feeding. These spiders also prefer sugar solutions to plain water, which indicates that they are seeking nutrients. Since many spiders are nocturnal, the extent of nectar consumption by spiders may have been under-estimated. Nectar contains amino acids, lipids, vitamins and minerals in addition to sugars, and studies have shown that other spider species live longer when nectar is available. Feeding on nectar avoids the risks of struggles with prey, and the costs of producing venom and digestive enzymes.
Various species are known to feed on dead arthropods (scavenging), web silk, and their own shed exoskeletons. Pollen caught in webs may also be eaten, and studies have shown that young spiders have a better chance of survival if they have the opportunity to eat pollen. In captivity, several spider species are also known to feed on bananas, marmalade, milk, egg yolk and sausages.
The best-known method of prey capture is by means of sticky webs. Varying placement of webs allows different species of spider to trap different insects in the same area, for example flat horizontal webs trap insects that fly up from vegetation underneath while flat vertical webs trap insects in horizontal flight. Web-building spiders have poor vision, but are extremely sensitive to vibrations.
Females of the water spider Argyroneta aquatica build underwater "diving bell" webs which they fill with air and use for digesting prey, molting, mating and raising offspring. They live almost entirely within the bells, darting out to catch prey animals that touch the bell or the threads that anchor it. A few spiders use the surfaces of lakes and ponds as "webs", detecting trapped insects by the vibrations that these cause while struggling.
Net-casting spiders weave only small webs but then manipulate them to trap prey. Those of the genus Hyptiotes and the family Theridiosomatidae stretch their webs and then release them when prey strike them, but do not actively move their webs. Those of the family Deinopidae weave even smaller webs, hold them outstretched between their first two pairs of legs, and lunge and push the webs as much as twice their own body length to trap prey, and this move may increase the webs' area by a factor of up to ten. Experiments have shown that Deinopis spinosus has two different techniques for trapping prey: backwards strikes to catch flying insects, whose vibrations it detects; and forward strikes to catch ground-walking prey that it sees. These two techniques have also been observed in other deinopids. Walking insects form most of the prey of most deinopids, but one population of Deinopis subrufa appears to live mainly on tipulid flies that they catch with the backwards strike.
Mature female bolas spiders of the genus Mastophora build "webs" that consist of only a single "trapeze line", which they patrol. They also construct a bolas made of a single thread, tipped with a large ball of very wet sticky silk. They emit chemicals that resemble the pheromones of moths, and then swing the bolas at the moths. Although they miss on about 50% of strikes, they catch about the same weight of insects per night as web-weaving spiders of similar size. The spiders eat the bolas if they have not made a kill in about 30 minutes, rest for a while, and then make new bolas. Juveniles and adult males are much smaller and do not make bolas. Instead they release different pheromones that attract moth flies, and catch them with their front pairs of legs.
There is strong evidence that spiders' coloration is camouflage that helps them to evade their major predators, birds and parasitic wasps, both of which have good color vision. Many spider species are colored so as to merge with their most common backgrounds, and some have disruptive coloration, stripes and blotches that break up their outlines. In a few species, such as the Hawaiian happy-face spider, Theridion grallator, several coloration schemes are present in a ratio that appears to remain constant, and this may make it more difficult for predators to recognize the species. Most spiders are insufficiently dangerous or unpleasant-tasting for warning coloration to offer much benefit. However a few species with powerful venoms, large jaws or irritant hairs have patches of warning colors, and some actively display these colors when threatened.
Many of the family Theraphosidae, which includes tarantulas and baboon spiders, have urticating hairs on their abdomens and use their legs to flick them at attackers. These hairs are fine setae (bristles) with fragile bases and a row of barbs on the tip. The barbs cause intense irritation but there is no evidence that they carry any kind of venom. A few defend themselves against wasps by including networks of very robust threads in their webs, giving the spider time to flee while the wasps are struggling with the obstacles. The golden wheeling spider, Carparachne aureoflava, of the Namibian desert escapes parasitic wasps by flipping onto its side and cartwheeling down sand dunes.
A few species of spiders that build webs live together in large colonies and show social behavior, although not as complex as in social insects. Anelosimus eximius (in the family Theridiidae) can form colonies of up to 50,000 individuals. The genus Anelosimus has a strong tendency towards sociality: all known American species are social, and species in Madagascar are at least somewhat social. Members of other species in the same family but several different genera have independently developed social behavior. For example, although Theridion nigroannulatum belongs to a genus with no other social species, T. nigroannulatum build colonies that may contain several thousand individuals that co-operate in prey capture and share food. Other communal spiders include several Philoponella species (family Uloboridae), Agelena consociata (family Agelenidae) and Mallos gregalis (family Dictynidae). Social predatory spiders need to defend their prey against kleptoparasites ("thieves"), and larger colonies are more successful in this. The herbivorous spider Bagheera kiplingi lives in small colonies which help to protect eggs and spiderlings. Even widow spiders (genus Latrodectus), which are notoriously aggressive and cannibalistic, have formed small colonies in captivity, sharing webs and feeding together.
There is no consistent relationship between the classification of spiders and the types of web they build: species in the same genera may build very similar or significantly different webs. Nor is there much correspondence between spiders' classification and the chemical composition of their silks. Convergent evolution in web construction, in other words use of similar techniques by remotely related species, is rampant. Non-orb web designs and the spinning behaviors that produce them have received very little attention from arachnologists, despite the fact that the majority of spiders build non-orb webs. The basic radial-then-spiral sequence visible in orb webs and the sense of direction required to build them may have been inherited from the common ancestors of most spider groups. It used to be thought that the sticky orb web was an evolutionary innovation resulting in the diversification of the Orbiculariae. Now, however, it appears that non-orb spiders are a sub-group that evolved from orb-web spiders, and non-orb spiders have over 40% more species and are four times as abundant as orb-web spiders. Their greater success may be because sphecid wasps, which are often the dominant predators on spiders, much prefer to attack spiders that have flat webs.
About half the potential prey that hit orb webs escape. A web has to perform three functions: intercepting the prey (intersection); absorbing its momentum without breaking (stopping); and trapping the prey by entangling it or sticking to it (retention). No single design is best for all prey. For example: wider spacing of lines will increase the web's area and hence its ability to intercept prey, but reduce its stopping power and retention; closer spacing, larger sticky droplets and thicker lines would improve retention, but would make it easier for potential prey to see and avoid the web, at least during the day. However there are no consistent differences between orb webs built for use during the day and those built for use at night. In fact there is no simple relationship between orb web design features and the prey they capture, as each orb-weaving species takes a wide range of prey.
The hubs of orb webs, where the spiders lurk, are usually above the center as the spiders can move downwards faster than upwards. If there is an obvious direction in which the spider can retreat to avoid its own predators, the hub is usually offset towards that direction.
Horizontal orb webs are fairly common, despite being less effective at intercepting and retaining prey and more vulnerable to damage by rain and falling debris. Various researchers have suggested that horizontal webs offer compensating advantages, such as: reduced vulnerability to wind damage; reduced visibility to prey flying upwards, because of the back-lighting from the sky; enabling oscillations to catch insects in slow horizontal flight. However there is no single explanation for the common use of horizontal orb webs.[49]
Spiders often attach highly visible silk bands called decorations or stabilimenta to their webs. Field research suggests that webs with more decorative bands captured more prey per hour. However a laboratory study showed that spiders reduce the building of these decorations if they sense the presence of predators.[52]
There are several unusual variants of orb web, many of them convergently evolved, including: attachment of lines to the surface of water, possibly to trap insects in or on the surface; webs with twigs through their centers, possibly to hide the spiders from predators; "ladder-like" webs that appear most effective in catching moths. However the significance of many variations is unclear.
In 1973, Skylab 3 took two orb-web spiders into space to test their web-spinning capabilities in zero gravity. At first both produced rather sloppy webs, but they adapted quickly.
Members of the family Theridiidae weave irregular, tangled, three-dimensional webs, popularly known as cobwebs.There seems to be an evolutionary trend towards a reduction in the amount of sticky silk used, leading to its total absence in some species. The construction of cobwebs is less stereotyped than that of orb-webs, and may take several days.
The Linyphiidae generally make horizontal but uneven sheets, with tangles of stopping threads above. Insects that hit the stopping threads fall on to the sheet or are shaken on to it by the spider, and are held by sticky threads on the sheet until the spider can attack from below.